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case, D contains the eigenvalues in the diagonal. G then is
an orthonormal modal matrix of D.

811 821 .. 8nt
G = 819 899 oo 8n2 (13)

gln g2n L] gnn

and
d, 0 0
D= {0 dyy ... 0 = GDGT (14)
0 0 ... 0n

where the jth column in G is the eigenvector correspond-
ing to the jth eigenvalue d;;. This method is easy to use
since computer programs for finding the eigenvalues and
eigenvectors of a real symmetric matrix are easily avail-
able.5

The second method is to look for a matrix G which is
triangular; i.e.,

811 812 ¢+« 8in
G =10 99 o os Son (15)
0 0 ... %m
where
giiz = A/ A, (16)

and A;_j is the determinant obtained by striking out the
last k rows and last k& columns from the matrix D. The re-
maining g;; are obtained from

dip = 2818wy R =7 +1,...,n amn

the procedure outlined by Graham appears to be equiva-
lent to this latter method of diagonalization.

Two-Constraint Minimization Problem

It may now be expected that the drag minimization cal-
culation would be simplified. Consider for example, the
problem of obtaining minimum drag subject to given lift
and pitching moment constraints. The problem is

Minimize Cp = Tetd;;

subject to Te;l; = Cy (18)

Z€imi = CM

where d;;, l;, and m; are the drag, lift and moment coeffi-
cients, respectively, due to unit intensity of the ith mem-
ber in an orthognal set. C; and Cj are prescribed lift and
moment coefficients, respectively. The corresponding un-
constrained problem is

Minimize Ze.%d;; + N(Z€;l; — Cp) + MEem; — Cy)
19)

where \; and A2 are the Lagrange multipliers. The neces-
sary conditions that Eq. (19) be a minimum are

2eid;; + M1+ Agmy =050 = 1,200, 2 (20)
Eeili =C
- 1)
261-’}’}’[,- = CM
Multiplying Eq. (20) by ¢; and summing over ¢ and using
the two constraint equations (21), we have

M o= — (LCy + 2Cp)/Cy (22)
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Substituting for A in Eq. (20) we have

1126, Cyl;
“=aay et u(mtg)] e

and for Cp we find

2 2
Cfrlie — 20,025 4 ¢ 1
C — ii djj djj (24)
D 12 _m2 ( ,1.m.>2
soi w0 wii™
dii djf di]'

Equation (20) then yields

2Cp Im; C Im, m;*
= {2C .__DE_J_.L/(_M Mk _1_)

h ( " Cr d; ) Cr g d;; Zdij @5)
When only the lift constraint is given, setting A2 = 0 gives
the results obtained in Ref. 1.

The Langrange multiplier method when applied to no-
northogonal loads may give rise to an ill-conditioned ma-
trix and higher precision may be required to obtain rea-
sonable results. The orthogonal loading method alleviates
this problem and should be suitable for digital calcula-
tions.
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Frequency Determination from
Similarity Considerations

Stanley E. Hillard*
Pennsylvania State University, University Park, Pa.

Nomenclature
a,a;,a;" = bending frequency coefficients
BiBi By = torsional frequency coefficients
p = fluid density
ps = structural density
ap = allowable bending stress
O = allowable shear stress
I = aircraft relative mass
w = frequency (rad/sec)
a’ = sonic velocity
z = mean aerodynamic chord

c1’,¢c2’,¢1”’,¢2”” = frequency coefficients
gravitational acceleration
reduced frequency parameter
semispan length

wing mass per unit length
wing thickness at root

= modulus of elasticity
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G = shear modulus

I = area moment of inertia

Iy = wing mass moment of inertia per unit span
J = polar moment of inertia

M = aircraft gross mass

M = Mach number

w = aircraft gross takeoff weight
Subscripts and Superscripts

b = bending mode

i = mode designation

t = torsional mode

I. Introduction

AN important quantity which appears in the analysis for
dynamic response of an aircraft when wing bending and
torsional flexibility effects are included, is the ratio of the
respective natural frequencies to the forcing frequency.
For preliminary analysis, it would be advantageous to be
able to determine such values in an approximate way by
considering only a few of the gross characteristics of the
aircraft. The application of similarity to this task seems
appropriate. Various aircraft similarity parameters may
be investigated as to their utilization in evaluating the re-
quired wing frequencies. Those of importance will now be
determined.

II. Natural Frequency

If one considers a cantilevered uniform beam to approx-
imate, in a simple case, a wing, the exact solution for the
bending natural frequency is given as
wl = o (El/mIH)/? (1)

1

where for the fundamental mode «y = 3.515.
The quantities under the radical may be expressed in
terms of aircraft parameters in the following manner:

I = ¢ (Wit/oy) 2)
m = ¢y (pgtc) &)
po= (M/pc?h )

Equations (2, 3, and 4) may be substituted into Eq. (1) to
yield

w? = a;(E/oH{c/THo/ pHe/ 1} ut'? )
where

(;. = ai(Cil/Cz')i/Z

1

If the type of craft under consideration is similar geome-
trically and materially to other known craft, then these
may be used to evaluate the coefficient trends. It may also
be shown that the nondimensional quantities (E/op),
(c/l), and (p/ps) will be constant.? For example, if one
considers subsonic transport jet aircraft, both domestic
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Fig.1 Takeoff weight vs relative mass.
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and foreign, (¢/l) is found to be approximately 0.4 for all
craft regardless of size. Material properties obviously indi-
cate that (E/o,) and (p/ps) are also constant. It is, there-
fore, possible to express the frequency as

w’ = o (ug/nt"? )

where a,’ is equal to
a) = a;[{ey"/ ey HE/o,Hc/THp/ ps} 1 (7

The frequency relation, Eq. (6) may be seen to be similar
to that for a simple pendulum weighted by the aircraft
relative mass u and the coefficient &;’. The relative mass
is plotted against gross takeoff weight in Fig. 1 for subson-
ifc jets and turboprop craft traveling at thirty thousand
eet.

The torsional frequency of a cantilevered wing may also
be related to analogous nondimensional parameters. The
torsional frequency is usually expressed as

W' = B(GJI/I, I (8)

but the following substitutions may be made:

J = (,'1”(WZZ/()'S) (9)
Iy = " (p,ct) (10)

Torsional frequency then takes the form
w' = B (ug/D'"? (1)

which again is an analogous expression to the simple pen-
dulum weighted by the coefficient 3,7 and the craft’s rela-
tive mass u. In Eq. (11)

8" = Bc/o Ho/ o {c/T T /a2 (12)

The nondimensional quantities (G/as), (E/ab), (p/ps),
(e/l), (c1’/co’), and (c1//ce’’) may be established once
and for all. Although (¢1’/c2’) and (c1’/c2’’) are not con-
stants, a plot may be established against relative mass
from known characteristics of similar craft. Therefore, for
any geometrically and materially similar craft, it is only
necessary to establish the relative mass from Fig. 1 and
specify the semispan length in order that the frequencies
be known in an approximate way.

The choice of parameters to be used is not unique.
Other possible schemes may be derived. It is found that
several terms in the preceding relations are dependent on
the flight altitude. Such quantities are the relative mass p
and the density p.

III. Reduced Frequency Parameter

The _reduced frequency parameter may be expressed as
a function of Mach number and sonic velocity

ki = wiZ/Zuo (13)
The bending reduced frequency may be expressed using
Eq. (6)
B — &"(—1=) (E M)”z (14)
1 - 1 aIM g
where
&= a2/
Similarly, the relation for the torsional frequency is given
by substitution of Eq. (11) into Eq. (13).
- 1
e gl X 1/2
Rt =B () @ew) (15)
B = B/

where
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The reference altitude upon which u, p, and a’ are to be
selected is clearly arbitrary.

IV. Conclusions

For a specific type of craft which is structurally and
geometrically similar, a plot may be established for the
coefficients &;" and B, against relative mass u. For engi-
neering approximations of the wing natural frequencies, it
is only necessary to compute y, interpolate values of the
coefficients @’ and B;’, and specify the semispan length.
This method of approximation is feasible for all types of
craft as long as similarity characteristics within each class
is preserved.
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Cambered Joukowsky Airfoil in a
Nonuniform Weak Shear Flow

A. K. Gupta* and S. C. Sharmat
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THE analysis by Tsien,? Sowryda,2 and Jones® of sym-
metrical and cambered Joukowsky airfoils placed in two-
dimensional uniform and nonuniform shear flows have
predicted an increase in lift and pitching moment charac-
teristics compared to the values of uniform flow. The re-
sults for symmetrical Joukowsky airfoils have been tested
experimentally by Vidal4; Vidal, Hilton, and Curtis5; and
Ludwig and Erickson Jr.6 for the values of shear parame-
ter equal to about two to five. Furthermore, their experi-
ments carried out in a two dimensional nonuniform shear
flow simulating a propeller slipstream showed that the
airfoil characteristics depended upon the location of the
airfoil and the product of local stream shear with the
shear derivative.

An experimental investigation was undertaken to ex-
tend the measurements to the cambered Joukowsky airfoil
placed in a two-dimensional nonuniform weak shear flow.
The results of this investigation are presented in this
Note.

Experiments

A 6 in. chord, 12 in. span Joukowsky airfoil of thickness
ratio 7 of 0.15 and camber of 0.10 was made out of sea-
soned wood. The coordinates of the Joukowsky profile
were obtained by the method given in Ref. 7. Twenty-
three static pressure holes of diameter 0.032 in. were
made along the midspan chord, and an equal number of
pressure leads were taken out of a 3 in. o.d. tube fitted in
the center of the left tip of the airfoil. The axis of the 3,
in. tube coincided with the midchord axis, and the airfoil
was pitched about this axis. To obtain the nonuniform
weak shear flow, a screen using horizontal aluminum rods
of % in. and % in. diam was built following the steps out-
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Fig. 1a Screen; flow
from left to right.

Fig. 1b Airfoil.

Fig. 1c Cambered Joukowsky airfoil: chord 15 cms: thick-
ness 15%; camber 10%; static pressure taps (-).

lined in Ref. 5 and 6. Pictures of the screen mounted in
the wind-tunnel test section, of the cambered Joukowsky
airfoil, and a sketch of the contour of the airfoil chord
with static pressure locations marked by dots are shown in
Figs. 1la—c, respectively.

The experiments were carried out in a closed-circuit,
closed-jet, low-speed wind tunnel at IIT Kanpur. The test
section of the wind tunnel is 4 ft high, 1 ft wide, and 5.5 ft
long. It has a contraction ratio of 9.5 and a turbulence
level of 1.4% at the maximum wind speed of 180 fps. Two
fans mounted one on top of the other in the return circuit
are driven by two motors of 15 hp each. A velocity tra-
verse in the vertical direction made in the clear test sec-
tion showed a +£1.5% variation in mean velocity across the
test section height.

The two-dimensional airfoil which spanned the 1 ft
width of the test section was located 36 in. downstream of



